手机浏览器扫描二维码访问
……
“……你看,这样就是一个椭圆曲线了。不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。如果特征不等于2的话,那么仿射方程就是y^2=x^3+ax^2+bx+c。
那个BSd猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。这是我看了很多相关理论之后才找到的方法。这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入o这个群中的零元,根据规则,任何一个点P跟o相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与o点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。他拼了命学最后也只是勉强过关,拿到了学分。当然班上也有很多厉害的同学,随随便便学学就能拿满分的。
这也是他研究生阶段选择组合数学,毕业之后回到星城当了个高中数学老师的原因。
真不是他不想做科研,继续读博士,然后争取能在高校当老师。
主要还是能力有限,真读不动了。
所以他是真没完全听懂乔喻求解这个方程的思路。
众所周知,如果要判断数学上某个求解方法对一类方程是否具备普适性,首先得完全理解整个求解思路。
这就很尴尬了。
本以为凭借他在大学积累的数学知识,听完乔喻现场讲解之后,肯定能给出一个答案的。
但现在他需要在丢人跟想办法掩饰之间做出一个选择。
大概沉吟了十秒钟后,兰杰选择了坦诚。
因为他是真不太会装。
“乔喻,说实话,我的水平不够,没法判断……所以这个问题你只能自己去尝试了。找几个同类的方程,用你这种方法去求解,如果最后都能得出正确答案的话,就可以动笔写论文了。
论文具体怎么解决问题,我没办法帮你。但我可以教你论文具体该怎么写。毕竟数学论文的撰写是有着特定的格式跟行文要求的,也有一些常见的通用标准。”
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
小说简介绑定游戏,快乐种地作者古木架完结文案内卷疲惫的一天,叶舒不小心磕破了膝盖,摔坏了手机,崩溃之际,发现自己绑定了手机里的种田游戏。然后她就可以种什么活什么,不存在养不活的花草树木。用上肥料,还能瞬间开花结果。金手指啊!社畜如她流下了感动的泪水。那个班再上不了一点,她要马上辞职,去种花养草!只是城里生存空间狭小,没有...
文案相逢可以是处心积虑,相恋却必定是一见钟情。既然认清离不开彼此,那麽就好好的在一起吧。内容标签幻想空间天作之合娱乐圈甜文正剧沈渡沈醉齐凛高博一句话简介无声的承诺带来了不期而遇。立意一见钟情,必定是在一个平常的瞬间。...
魔蝎小说wwwmoxiexscom修真界都知道天衍宗剑阁长老温苒卿剑道天赋不凡,乃是分神期大修,长相绝美,是四海八荒众多修士的仰慕对象,也是天衍宗的第一人,可惜听说数年前被道侣所伤,一口气转修了无情道,更加不可接近。洛白衣,应该算是温苒卿的前夫吧,乃是修真界第一美人,当时他和温阁主结成道侣时,大家都觉得温苒卿是被对方那张脸糊弄了,这群人被嫉妒蒙了眼,完全忽视了对方也是清虚宗千年不遇的天才,实力天下第二,第一是他师父。可惜如此惊才艳艳的人物居然也是修无情道。大家都好奇,未来他们两个谁先杀夫(妻)证道,这件事每年都有人讨论,但凡天衍宗和清虚宗有一点风吹草动,都引起大家的热情。后来,天衍宗又发生一件大事,温苒卿和洛白衣的女儿温沉月居然也修了无情道。看戏的人顿时惊掉了下巴!无情道上辈子救了他们一家吗?要这辈子全家人都给它献身。不过听说那温沉月剑道天赋亦是不凡,不过十六岁就已经到达金丹,简直是可怕。按照正统的修炼法门,就是打娘胎里就开始修炼,十六岁到达金丹也是很难的事情。众人琢磨着,难不成无情道有什么特殊捷径。对此天衍宗小师妹温沉月面对疑惑的师兄师姐道仙者不坠爱河,一路元婴分神。天衍宗众弟子?小师妹又说些他们不懂的话了。...
小说简介书名直播吕雉打工养我!作者西西的22号星球简介在高三那年,夏冉父母双亡,后被吃绝户的少女,最后的人生中也走了弯路,二十四岁那年从医院天台一跃而跳,睁眼却是重开一世,回到高考后的暑假,然后突然人生拐了个弯,得到一个系统。但是养崽系统?她就是那个崽?哦!她这个18岁已成年的大崽,也没钱上大学的苦逼崽,确实很需要人养于是,需要...
我是游戏策划师孟星替,我被莫名其妙地卷入了自己设计的名叫潭中剑的游戏系统。我掉落到一个村子里,遇到了一个女孩,带着村民把我五花大绑了起来等候发落。周围的村民举着锄头叉子犁耙各种东西围着我绕一圈,那个山羊胡子上下打量了半晌,看这个衣着,倒不太像那里派来的人。废话,你看我穿的这格子衫牛仔裤,一看就是电子公司打杂的。女孩名叫洛可儿,是这个村子的村长。而我本人则成了男主角魏蓝。被女主折腾得死去活来,还被驴子拔了一颗牙,遇到了长得不科学的蛇类生物,以及会欺负人的奶娃娃,我被胜败乃兵家常事,大侠请重新来过打发回了游戏开始部分。到底该如何通关离开这个游戏,还是就此成为滚巨石的西西弗斯,我的内心在咆哮。直到遇到名叫轩辕耀世的杰克苏男二後,心中的无语到达了高潮。大BOSS什麽时候出现,到底该如何通关,女主到底是不是二次元人物,该怎麽回到现世,我在游戏里一路狂奔内容标签江湖欢喜冤家女强游戏网游东方玄幻轻松其它李洪秀,孙燕子,梅成襄,程璐璐...